Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Vaccines (Basel) ; 11(1)2022 Dec 22.
Article in English | MEDLINE | ID: covidwho-2236065

ABSTRACT

(1) Backgrounds and Objectives: The global battle to contain the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) is still ongoing. This cross-sectional study aimed to detect the seroprevalence of anti-SARS-CoV-2 IgM/IgG among previously symptomatic/asymptomatic and vaccinated/unvaccinated inhabitants of Sakaka City, Aljouf, Saudi Arabia. (2) Methods: Blood samples of 400 participants were tested for the presence of anti-SARS-CoV-2 IgM/IgG using colloidal gold immuno-chromatography lateral flow immunoassay cards. (3) Results: The prevalence of anti-SARS-CoV-2 IgM and IgG positivity was 45.8% and 42.3%, respectively. Statistically significant correlations (p < 0.05) were found between the previous RT-PCR testing for SARS-CoV-2-RNA and positivity for IgM and/or IgG. The highest seroprevalence of IgM and IgG were detected among smokers, participants aged ≥40 years, and patients with chronic diseases. Although most of the participants (58.5%) did not previously experience COVID-19 like symptoms, the anti-SARS-CoV-2 IgM and IgG seropositivity amongst them was 49.1% and 25.6%, respectively, with higher seroprevalence among males than females. At the time of the study, the SARS-CoV-2 vaccination rate at our locality in Saudi Arabia was 43.8% with statistically significant correlation (p < 0.001) between being vaccinated and anti-SARS-CoV-2 IgM and/or IgG positivity, with more positivity after receiving the second vaccine dose. (4) Conclusions: Public assessment reflects the real scale of the disease exposure among the community and helps in identifying the asymptomatic carriers that constitute a major problem for controlling the SARS-CoV-2. To limit the spread of the virus, rigorous implementation of large-scale SARS-CoV-2 vaccination and anti-SARS-CoV-2 serological testing strategies should be empowered.

2.
Diagnostics (Basel) ; 13(2)2023 Jan 13.
Article in English | MEDLINE | ID: covidwho-2199877

ABSTRACT

Background: COVID-19 outcomes display multiple unexpected varieties, ranging from unnoticed symptomless infection to death, without any previous alarm or known aggravating factors. Aim: To appraise the impact of ACErs4291(A/T) and ERAP1rs26618(T/C) human polymorphisms on the outcome of COVID-19. Subjects and methods: In total, 240 individuals were enrolled in the study (80 with severe manifestations, 80 with mild manifestations, and 80 healthy persons). ACErs4291(A/T) and ERAP1rs26618(T/C) genotyping was performed using RT-PCR. Results: The frequency of the ACErs4291AA genotype was higher among the severe COVID-19 group than others (p < 0.001). The ERAP1rs26618TT genotype frequency was higher among the severe COVID-19 group in comparison with the mild group (p < 0.001) and non-infected controls (p = 0.0006). The frequency of the ACErs4291A allele was higher among severe COVID-19 than mild and non-infected groups (64.4% vs. 37.5%, and 34.4%, respectively), and the ERAP1rs26618T allele was also higher in the severe group (67.5% vs. 39.4%, and 49.4%). There was a statistically significant association between severe COVID-19 and ACErs4291A or ERAP1rs26618T alleles. The coexistence of ACErs4291A and ERAP1rs26618T alleles in the same individual increase the severity of the COVID-19 risk by seven times [OR (95%CI) (LL−UL) = 7.058 (3.752−13.277), p < 0.001). A logistic regression analysis revealed that age, male gender, non-vaccination, ACErs4291A, and ERAP1rs26618T alleles are independent risk factors for severe COVID-19. Conclusions: Persons carrying ACErs4291A and/or ERAP1rs26618T alleles are at higher risk of developing severe COVID-19.

4.
Int J Environ Res Public Health ; 19(12)2022 06 10.
Article in English | MEDLINE | ID: covidwho-1884198

ABSTRACT

(1) Backgrounds and Objectives: Since its discovery, information about the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has spread rapidly. However, many issues remain unresolved. Coronaviruses are primarily transmitted through respiratory secretions. The possibility of transmission via donated blood transfusion deserves studying. This is the first study in Saudi Arabia to look at pre-vaccination donated blood anti-SARS-CoV-2 antibody content as a marker for virus transmission via viral RNA positive blood and/or the potential therapeutic value of convalescent plasma. (2) Methods: A total of 300 blood samples were sequentially collected from unvaccinated donors who donated blood to the blood bank of Prince Mutaib Bin Abdulaziz Hospital in Sakaka, Al-Jouf, Saudi Arabia. Specific ELISA was used to detect anti-SARS-CoV-2 IgG and IgM antibodies. SARS-CoV-2 was detected using specific real-time reverse-transcription PCR (rRT-PCR). (3) Results: The prevalence of anti-SARS-CoV-2 IgG was low (9%), whereas the prevalence of anti-SARS-CoV-2 IgM was high (65%). Relevant demographics, anthropometrics, and lifestyle factors revealed significant associations (p < 0.05) between IgM-positivity only vs. age (age group 21-30 years), postgraduate education, no history of international travel, IgG-negativity, and absence of experience with COVID-19-like symptoms. Furthermore, there are significant associations (p < 0.05) between IgG-positivity only vs. age (age group 21-30 years), postgraduate education, and being a non-healthcare worker. All donors in the anti-SARS-CoV-2 IgG-positive group (n = 27) had previously experienced symptoms similar to COVID-19 (p < 0.001) and most of them (n = 24) showed anti-SARS-CoV-2 IgM-positive test (p = 0.006). However, all the samples tested negative for SARS-CoV-2 RNA using rRT-PCR. (4) Conclusion: Our findings add to the growing body of evidence that donated blood is safe, with the added benefit of convalescent plasma rich in potentially neutralizing IgG and IgM against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Viral , COVID-19/epidemiology , COVID-19/therapy , Humans , Immunization, Passive , Immunoglobulin G , Immunoglobulin M , RNA, Viral/genetics , SARS-CoV-2/genetics , Saudi Arabia/epidemiology , Vaccination , Young Adult , COVID-19 Serotherapy
5.
Saudi J Biol Sci ; 28(11): 6645-6652, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1313431

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) was caused by the newly emerged corona virus (2019-nCoV alias SARS-CoV-2) that resembles the severe acute respiratory syndrome virus (SARS-CoV). SARS-CoV-2, which was first identified in Wuhan (China) has spread globally, resulting in a high mortality worldwide reaching ~4 million deaths to date. As of first week of July 2021, ~181 million cases of COVID-19 have been reported. SARS-CoV-2 infection is mediated by the binding of virus spike protein to Angiotensin Converting Enzyme 2 (ACE2). ACE2 is expressed on many human tissues; however, the major entry point is probably pneumocytes, which are responsible for synthesis of alveolar surfactant in lungs. Viral infection of pneumocytes impairs immune responses and leads to, apart from severe hypoxia resulting from gas exchange, diseases with serious complications. During viral infection, gene products (e.g. ACE2) that mediate viral entry, antigen presentation, and cellular immunity are of crucial importance. Human leukocyte antigens (HLA) I and II present antigens to the CD8+ and CD4+ T lymphocytes, which are crucial for immune defence against pathogens including viruses. HLA gene variants affect the recognition and presentation of viral antigenic peptides to T-cells, and cytokine secretion. Additionally, endoplasmic reticulum aminopeptidases (ERAP) trim antigenic precursor peptides to fit into the binding groove of MHC class I molecules. Polymorphisms in ERAP genes leading to aberrations in ERAP's can alter antigen presentation by HLA class I molecules resulting in aberrant T-cell responses, which may affect susceptibility to infection and/or activation of immune response. Polymorphisms from these genes are associated, in global genetic association studies, with various phenotype traits/disorders many of which are related to the pathogenesis and progression of COVID-19; polymorphisms from various genes are annotated in genotype-tissue expression data as regulating the expression of ACE2, HLA's and ERAP's. We review such polymorphisms and illustrate variations in their allele frequencies in global populations. These reported findings highlight the roles of genetic modulators (e.g. genotype changes in ACE2, HLA's and ERAP's leading to aberrations in the expressed gene products or genotype changes at other genes regulating the expression levels of these genes) in the pathogenesis of viral infection.

6.
Front Pharmacol ; 11: 587451, 2020.
Article in English | MEDLINE | ID: covidwho-1000124

ABSTRACT

COVID-19 is caused by Severe Acute Respiratory Syndrome Coronavirus-2, which has infected over thirty eight million individuals worldwide. Emerging evidence indicates that COVID-19 patients are at a high risk of developing coagulopathy and thrombosis, conditions that elevate levels of D-dimer. It is believed that homocysteine, an amino acid that plays a crucial role in coagulation, may also contribute to these conditions. At present, multiple genes are implicated in the development of these disorders. For example, single-nucleotide polymorphisms (SNPs) in FGG, FGA, and F5 mediate increases in D-dimer and SNPs in ABO, CBS, CPS1 and MTHFR mediate differences in homocysteine levels, and SNPs in TDAG8 associate with Heparin-induced Thrombocytopenia. In this study, we aimed to uncover the genetic basis of the above conditions by examining genome-wide associations and tissue-specific gene expression to build a molecular network. Based on gene ontology, we annotated various SNPs with five ancestral terms: pulmonary embolism, venous thromboembolism, vascular diseases, cerebrovascular disorders, and stroke. The gene-gene interaction network revealed three clusters that each contained hallmark genes for D-dimer/fibrinogen levels, homocysteine levels, and arterial/venous thromboembolism with F2 and F5 acting as connecting nodes. We propose that genotyping COVID-19 patients for SNPs examined in this study will help identify those at greatest risk of complications linked to thrombosis.

SELECTION OF CITATIONS
SEARCH DETAIL